Finite indentation of highly curved elastic shells
نویسندگان
چکیده
Experimentally measuring the elastic properties of thin biological surfaces is non-trivial, particularly when they are curved. One technique that may be used is the indentation of a thin sheet of material by a rigid indenter, while measuring the applied force and displacement. This gives immediate information on the fracture strength of the material (from the force required to puncture), but it is also theoretically possible to determine the elastic properties by comparing the resulting force-displacement curves with a mathematical model. Existing mathematical studies generally assume that the elastic surface is initially flat, which is often not the case for biological membranes. We previously outlined a theory for the indentation of curved isotropic, incompressible, hyperelastic membranes (with no bending stiffness) which breaks down for highly curved surfaces, as the entire membrane becomes wrinkled. Here, we introduce the effect of bending stiffness, ensuring that energy is required to change the shell shape without stretching, and find that commonly neglected terms in the shell equilibrium equation must be included. The theory presented here allows for the estimation of shape- and size-independent elastic properties of highly curved surfaces via indentation experiments, and is particularly relevant for biological surfaces.
منابع مشابه
Temperature Effect on Mechanical Properties of Top Neck Mollusk Shells Nano-Composite by Molecular Dynamics Simulations and Nano-Indentation Experiments
Discovering the mechanical properties of biological composite structures at the Nano-scale is much interesting today. Top Neck mollusk shells are amongst biomaterials Nano-Composite that their layered structures are composed of organic and inorganic materials. Since the Nano indentation process is known as an efficient method to determine mechanical properties like elastic modulus and hardness ...
متن کاملWrinkling of pressurized elastic shells.
We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells are subject to a wrinkling instability. We study wrinkling in depth, presenting scaling laws for the critical indentation at which wrinkling occurs and the nu...
متن کاملFinite element analysis of elastic-plastic solids under Vickers indentation: surface deformation
Finite element modeling has been used to study the development of surface deformation during indentation with a Vickers indenter. A wide range of materials with different elastic modulus and yield stresses are examined. Results show that in a pyramidal indentation process, for a perfectly plastic material, sinking-in during loading can change to pile-up in unloading. This phenomenon depends on ...
متن کاملAnisotropic blistering instability of highly ellipsoidal shells.
The formation of localized periodic structures in the deformation of elastic shells is well documented and is a familiar first stage in the crushing of a spherical shell such as a ping-pong ball. While spherical shells manifest such periodic structures as polygons, we present a new instability that is observed in the indentation of a highly ellipsoidal shell by a horizontal plate. Above a criti...
متن کاملElastic Buckling Analysis of Composite Shells with Elliptical Cross-section under Axial Compression
In the present research, the elastic buckling of composite cross-ply elliptical cylindrical shells under axial compression is studied through finite element approach. The formulation is based on shear deformation theory and the serendipity quadrilateral eight-node element is used to study the elastic behavior of elliptical cylindrical shells. The strain-displacement relations are accurately acc...
متن کامل